Amulet released at SenSys’16

Today at the ACM Conference on Embedded Networked Sensor Systems (SenSys 2016) the Amulet team presented a paper about the design and evaluation of the Amulet platform – and unveiled a video overview of the platform and its capabilities. Check out the specs below the photo.

Indeed, we are pleased to share the Amulet hardware and software, open-source on GitHub, under a generous license that allows free use by the research community. We encourage you to download the details, fabricate your own Amulet wearable, and let us know what you think!

Amulets on table - slant.JPG Continue reading

Amulet paper to appear at WMMADD

I’m pleased to share a new paper that we’ll be presenting next month at the Workshop on Mobile Medical Applications – Design and Development (WMMADD)  at SenSys in Memphis.

Abstract: Interest in using mobile technologies for health-related applications (mHealth) has increased. However, none of the available mobile platforms provide the essential properties that are needed by these applications. An mHealth platform must be (i) secure; (ii) provide high availability; and (iii) allow for the deployment of multiple third-party mHealth applications that share access to an individual’s devices and data. Smartphones may not be able to provide property (ii) because there are activities and situations in which an individual may not be able to carry them (e.g., while in a contact sport). A low-power wearable device can provide higher availability, remaining attached to the user during most activities. Furthermore, some mHealth applications require integrating multiple on-body or near-body devices, some owned by a single individual, but others shared with multiple individuals. In this paper, we propose a secure system architecture for a low-power bracelet that can run multiple applications and manage access to shared resources in a body-area mHealth network. The wearer can install a personalized mix of third-party applications to support the monitoring of multiple medical conditions or wellness goals, with strong security safeguards. Our preliminary implementation and evaluation supports the hypothesis that our approach allows for the implementation of a resource monitor on far less power than would be consumed by a mobile device running Linux or Android. Our preliminary experiments demonstrate that our secure architecture would enable applications to run for several weeks on a small wearable device without recharging.

  • Andrés Molina-Markham, Ronald Peterson, Joseph Skinner, Tianlong Yun, Bhargav Golla, Kevin Freeman, Travis Peters, Jacob Sorber, Ryan Halter, David Kotz. Amulet: A secure architecture for mHealth applications for low-power wearable devices. In Proceedings of the Workshop on Mobile Medical Applications – Design and Development (WMMADD), November 2014. [PDF]