Amulet Redesigned

It’s been quite awhile since our last hardware update, so we thought it best to update you all on our newest Amulet Hardware! Below are pictures and specs for our most recent hardware revision, which features a Sharp LS013B7DH03 display, three capacitive touch sensors, and a custom 3D printed case that is made up of two different types of materials–a soft flexible plastic to cover the buttons, and a hard durable plastic to encase and protect the inner electronics.



Full List of Features

  • Processing:
    • Texas Instruments MSP430FR5989, 2 KB SRAM and 128 KB of FRAM
  • Sensing:
    • Analog Devices ADMP510 microphone
    • Everlight ALS-PT19 light sensor
    • Texas Instruments TMP20 temperature sensor
    • STMicroelectronics L3GD20H gyroscope
    • Analog Devices ADXL362 accelerometer
    • Lapis Semi ML8511 UVA/B sensor
  • Communication:
    • Nordic nRF51822 used as a modem for communicating with peripheral BLE devices (such as a heart-rate monitor)
  • User Interface:
    • Sharp LS013B7DH03 display with 128×128 resolution
    • Two buttons
    • Three capacitive touch sensors with low power MPR121 touch controller
    • Haptic buzzer, and two LEDs.
  • Storage:
    • The small secondary storage board holds a microSD card reader.
  • Misc:
    • The board also includes a battery charger (MCP73831)
    • 110mAh battery
  • Supported Applications:
    • EMA – Displays a question after a timer or manual trigger, gets the user’s input, and logs it to the SD card
    • Battery Meter – Lists the current charge left in the batter in terms of percentage
    • Blinky – Demonstrates how to blink an LED
    • Clock – A clock for the system
    • Fall Detection – Detects when the wearer falls down
    • Heart Rate Log – Records and displays the user’s heart rate
    • Pedometer – Counts the user’s steps
    • Sun Exposure – Measures a user’s sun/light exposure over time
    • Temperature – Measures temperature over time

Wearable Amulet design

A few weeks ago we assembled our first complete Amulet, ready for wearing!   Here are a few shots so you can get a look at the case – which is mounted on a off-the-shelf wristband we hacked to encase the battery.





On one side, a button and a scrollwheel.



On the other side, two buttons.

On top, a low-energy display (like e-ink).


More pictures (inside the case!) below the break.

Continue reading

Amulet presented at mHealth Summit

logo for the mHealth SummitPerhaps the largest annual event related to mHealth is the mHealth Summit, held near Washington DC.  Today, the summit kicked off with a Privacy & Security Symposium, including a presentation by David Kotz on Developing a Secure mHealth Platform for Wearables, in which he described the Amulet project.  The talk presented the Amulet approach to providing a wearable hub for body-area mHealth applications, and our latest hardware and software prototypes.  The talk generated a lot of interesting questions from the audience of about 60-70 people.

More news once we publish our new paper describing Amulet – hopefully within the next six months.

Amulet paper to appear at WMMADD

I’m pleased to share a new paper that we’ll be presenting next month at the Workshop on Mobile Medical Applications – Design and Development (WMMADD)  at SenSys in Memphis.

Abstract: Interest in using mobile technologies for health-related applications (mHealth) has increased. However, none of the available mobile platforms provide the essential properties that are needed by these applications. An mHealth platform must be (i) secure; (ii) provide high availability; and (iii) allow for the deployment of multiple third-party mHealth applications that share access to an individual’s devices and data. Smartphones may not be able to provide property (ii) because there are activities and situations in which an individual may not be able to carry them (e.g., while in a contact sport). A low-power wearable device can provide higher availability, remaining attached to the user during most activities. Furthermore, some mHealth applications require integrating multiple on-body or near-body devices, some owned by a single individual, but others shared with multiple individuals. In this paper, we propose a secure system architecture for a low-power bracelet that can run multiple applications and manage access to shared resources in a body-area mHealth network. The wearer can install a personalized mix of third-party applications to support the monitoring of multiple medical conditions or wellness goals, with strong security safeguards. Our preliminary implementation and evaluation supports the hypothesis that our approach allows for the implementation of a resource monitor on far less power than would be consumed by a mobile device running Linux or Android. Our preliminary experiments demonstrate that our secure architecture would enable applications to run for several weeks on a small wearable device without recharging.

  • Andrés Molina-Markham, Ronald Peterson, Joseph Skinner, Tianlong Yun, Bhargav Golla, Kevin Freeman, Travis Peters, Jacob Sorber, Ryan Halter, David Kotz. Amulet: A secure architecture for mHealth applications for low-power wearable devices. In Proceedings of the Workshop on Mobile Medical Applications – Design and Development (WMMADD), November 2014. [PDF]

USA Science Festival

Amulet on display in the NSF Fashion Show at the USA Science Festival

Amulet on display in the NSF Fashion Show at the USA Science Festival

We’re showing off the new wearable prototype of our Amulet device, today and tomorrow at the USA Science Festival in the Washington DC Convention Center. Come check it out!  Amulet appears in the National Science Foundation’s “fashion show” in the NSF pavilion at 12pm and 3pm Saturday and Sunday, April 26-27.

The USA Science Festival is a great family outing – indeed, is targeted towards kids and families. It’s free and open to the public, and also includes five booths presenting other Dartmouth scientists (right next to the AAAS pavilion, upstairs).

What is Amulet?

  • for tech researchers: An Amulet is computational jewelry, that is, a wearable computing device that is convenient and fashionable. It addresses the challenges of setting up and maintaining a secure and reliable body-area network of mobile-health devices. An Amulet serves as an identity proxy and provides essential body-area network services, such as device discovery and monitoring, authorization control for mobile apps, and a trusted path for interacting with the user. With a focused mHealth purpose, Amulet emphasizes security, privacy, and usability; the general-purpose smartphone platform remains to serve other applications. In the future, we believe, the smartphone will not be the preferred device for implementing a highly available WBAN controller. Rather, a very small wearable device will better meet the high availability requirements of mobile-health body area networks.
  • for healthcare experts: A wearable wristband that is easy for patients (and other individuals) to use for managing other health-related devices they wear, carry, or use occasionally. It can support medical care, wellness enhancement, and health-related research. It enhances security and privacy, and does not require the patient to replace their cellphone (or require the provider to give the patient a smartphone).
  • for everyone else: We envision a simple wristband that you can wear anywhere, any time, in any activity, which helps you monitor and manage your health.  Unlike popular  fitness trackers, this wristband talks to your other health and fitness devices, so they know it’s you using them – and gives you a quick and easy way to approve the transfer of health information from one device to another or to your health record. It can help track your use of medications and remind you when it’s time for the next dose. And, the wristband can provide critical health data to responders if you experience a medical emergency. It works with health-related apps on your smartphone or even on your smart television – but only when you and your Amulet are present and give permission.

Launch of the Amulet project

With a new grant from the National Science Foundation’s Computer Systems Research program, our group at Dartmouth and Clemson are launching the Amulet project to study the potential for computational jewelry to support mobile-health applications.

The advent of mobile health (mHealth) technology brings great opportunity to improve quality of life, improve individual and public health, and reduce healthcare costs. Although mHealth devices and applications are proliferating, many challenges remain to provide the necessary usability, manageability, interoperability, availability, security, and privacy. The goal of this project is to engineer the tools for, and lay the scientific foundation of, secure wearable mHealth. In the process, we are developing a general framework for body-area pervasive computing, centered around health-monitoring and health-management applications.

Our vision is that computational jewelry, in a form like a bracelet or pendant, will provide the properties essential for successful body-area mHealth networks. These devices coordinate the activity of the body-area network and provide a discreet means for communicating with their wearer. Such devices complement the capabilities of a smartphone, bridging the gap between the type of pervasive computing possible with a mobile phone and that enabled by wearable computing.

Our interdisciplinary team of investigators is designing and developing ‘Amulet’, an electronic bracelet and a software framework that enables developers to create (and users to easily use) safe, secure, and efficient mHealth applications that fit seamlessly into everyday life. The research is determining the degree to which computational jewelry offers advantages in availability, reliability, security, privacy, and usability, and developing techniques that provide these properties in spite of the severely-constrained power resources of wearable jewelry.

We described our vision for this concept in a 2012 HotMobile paper.  Subscribe to this blog to hear more about it as our research evolves!